Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project-imputed genotype data in up to ∼370,000 women, we identify 389 independent signals (P < 5 × 10-8) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain ∼7.4% of the population variance in age at menarche, corresponding to ∼25% of the estimated heritability. We implicate ∼250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility.

Original publication

DOI

10.1038/ng.3841

Type

Journal article

Journal

Nat Genet

Publication Date

06/2017

Volume

49

Pages

834 - 841

Keywords

Adolescent, Age Factors, Body Mass Index, Calcium-Binding Proteins, Databases, Genetic, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Genomic Imprinting, Humans, Intercellular Signaling Peptides and Proteins, Male, Membrane Proteins, Menarche, Neoplasms, Polymorphism, Single Nucleotide, Puberty, Quantitative Trait Loci, Ribonucleoproteins, Risk Factors