Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Therapeutic tolerance to self-antigens or foreign antigens is thought to depend on constant vigilance by Foxp3+ regulatory T cells (Tregs). Previous work using a pancreatic islet allograft model and a short pulse of CD3 antibody therapy has shown that CD8+ T cells become anergic and use TGFβ and coinhibitory signaling as their contribution to the tolerance process. Here, we examine the role of CD4+ T cells in tolerization by CD3 antibodies. We show that both Foxp3+ Tregs and CD4+ T cell anergy play a role in the induction of tolerance and its maintenance. Foxp3+ Tregs resisted CD3 antibody-mediated depletion, unlike intragraft Th1 CD4+ lymphocytes coexpressing granzyme B and Tbx21, which were selectively eliminated. Tregs were mandatory for induction of tolerance as their depletion at the time of CD3 antibody therapy or for a short time thereafter, by an antibody to CD25 (PC61), led to graft rejection. Early treatment with CTLA-4 antibody gave the same outcome. In contrast, neither PC61 nor anti-CTLA-4 given late, at day 100 posttransplant, reversed tolerance once established. Ablation of Foxp3 T cells after diphtheria toxin injection in tolerant Foxp3DTR recipient mice provided the same outcome. Alloreactive T cells had been rendered intrinsically unresponsive as total CD4+ or Treg-deprived CD4+ T cells from tolerant recipients were unable to mount donor-specific IFN-γ responses. In addition, intragraft Treg-deprived CD4+ T cells lacked proliferative capacities, expressed high levels of the inhibitory receptor PD-1, and exhibited a CD73hiFR4hi phenotype, thus reflecting a state of T cell anergy. We conclude that Tregs play a substantive and critical role in guiding the immune system toward tolerance of the allograft, when induced by CD3 antibody, but are less important for maintenance of the tolerant state, where T cell anergy appears sufficient.

Original publication

DOI

10.3389/fimmu.2017.00218

Type

Journal article

Journal

Front Immunol

Publication Date

2017

Volume

8

Keywords

CD3 monoclonal antibody, anergy, immunotherapy, regulatory T cells, transplant tolerance