Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Microbes have the potential to be highly cooperative organisms. The archetype of microbial cooperation is often considered to be the secretion of siderophores, molecules scavenging iron, where cooperation is threatened by "cheater" genotypes that use siderophores without making them. Here, we show that this view neglects a key piece of biology: siderophores are imported by specific receptors that constrain their use by competing strains. We study the effect of this specificity in an ecoevolutionary model, in which we vary siderophore sharing among strains, and compare fully shared siderophores with private siderophores. We show that privatizing siderophores fundamentally alters their evolution. Rather than a canonical cooperative good, siderophores become a competitive trait used to pillage iron from other strains. We also study the physiological regulation of siderophores using in silico long-term evolution. Although shared siderophores evolve to be downregulated in the presence of a competitor, as expected for a cooperative trait, privatized siderophores evolve to be upregulated. We evaluate these predictions using published experimental work, which suggests that some siderophores are upregulated in response to competition akin to competitive traits like antibiotics. Although siderophores can act as a cooperative good for single genotypes, we argue that their role in competition is fundamental to understanding their biology.

Original publication

DOI

10.1111/evo.13230

Type

Journal article

Journal

Evolution

Publication Date

06/2017

Volume

71

Pages

1443 - 1455

Keywords

Bacteria, competition, cooperation, fitness trade-off, microbial interaction, phenotypic regulation, public good, sharing, siderophores, specificity, xenosiderophores, Biological Evolution, Computer Simulation, Iron, Pseudomonas aeruginosa, Siderophores