Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To date many clinical studies aim to increase the number and/or fitness of CD4+CD127lowCD25+ regulatory T cells (Tregs) in vivo to harness their regulatory potential in the context of treating autoimmune disease. Here, we sought to define the phenotype and function of Tregs expressing the highest levels of IL-6 receptor (IL-6R). We have identified a population of CD4+CD127lowCD25+ TIGIT- T cells distinguished by their elevated IL-6R expression that lacked expression of HELIOS, showed higher CTLA-4 expression, and displayed increased suppressive capacity compared to IL-6RhiTIGIT+ Tregs. IL-6RhiTIGIT- CD127lowCD25+ T cells contained a majority of cells demethylated at FOXP3 and displayed a Th17 transcriptional signature, including RORC (RORγt) and the capacity of producing both pro- and anti-inflammatory cytokines, such as IL-17, IL-22 and IL-10. We propose that in vivo, in the presence of IL-6-associated inflammation, the suppressive function of CD4+CD127lowCD25+ FOXP3+IL-6RhiTIGIT- T cells is temporarily disarmed allowing further activation of the effector functions and potential pathogenic tissue damage.

Original publication

DOI

10.1016/j.clim.2017.03.002

Type

Journal article

Journal

Clin Immunol

Publication Date

06/2017

Volume

179

Pages

25 - 39

Keywords

Adolescent, Adult, CD4-Positive T-Lymphocytes, Cytokines, Diabetes Mellitus, Type 1, Humans, Male, Middle Aged, Phenotype, Receptors, Immunologic, STAT3 Transcription Factor, T-Lymphocyte Subsets, Young Adult