Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Brain-derived neurotrophic factor (BDNF) and its receptor TrkB regulate both short-term synaptic functions and long-term potentiation (LTP) of brain synapses, raising the possibility that BDNF/TrkB may be involved in cognitive functions. We have generated conditionally gene targeted mice in which the knockout of the trkB gene is restricted to the forebrain and occurs only during postnatal development. Adult mutant mice show increasingly impaired learning behavior or inappropriate coping responses when facing complex and/or stressful learning paradigms but succeed in simple passive avoidance learning. Homozygous mutants show impaired LTP at CA1 hippocampal synapses. Interestingly, heterozygotes show a partial but substantial reduction of LTP but appear behaviorally normal. Thus, CA1 LTP may need to be reduced below a certain threshold before behavioral defects become apparent.

Type

Journal article

Journal

Neuron

Publication Date

10/1999

Volume

24

Pages

401 - 414

Keywords

Animals, Animals, Newborn, Brain, Catalysis, Hippocampus, Learning, Long-Term Potentiation, Maze Learning, Mice, Mice, Knockout, Protein Isoforms, Receptor, trkB, Reference Values, Response Elements, Synaptic Transmission, Water