Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Nested-primer polymerase chain reaction (PCR) has been applied to the molecular cloning of 4.6-kb half-genome fragments of human immunodeficiency virus type 1 (HIV-1) taken directly from the peripheral blood mononuclear cells (PBMC) of an individual with neurological symptoms of HIV-1 infection. In a similar manner, gp120-coding portions of the envelope gene were cloned after PBMC from the same blood sample were cocultivated with uninfected PBMC for 28 days. The complete 1.6-kb nucleotide sequence of the gp120 gene was determined from each of 35 clones examined. Two of 13 (15%) PBMC-derived gp120 genes and 3 of 22 (14%) coculture-derived gp120 genes were defective as a result of frameshifts and an in-frame stop codon(s). Mean diversity between individual gp120-coding sequences in PBMC was fivefold greater (3.24%) than after coculture (0.65%). A predominant sequence of "strain" was found after coculture that was distinct from the diverse viral genotypes detected in vivo and therefore was selectively amplified during in vitro propagation. Multiple distinct third variable (V3) regions encoding the principal neutralizing domain of the envelope protein were detected in PBMC-derived genes, suggesting the presence of immunologic diversity of HIV env genes in vivo not reflected in the cocultured virus sample. The large size of the HIV fragments generated in this study will permit analysis of the diversity of immunologic reactivity, gene function, and pathogenicity of HIV genomes present within infected individuals, including the functional significance of the loss of diversity that occurs upon coculture.

Type

Journal article

Journal

J Virol

Publication Date

02/1992

Volume

66

Pages

875 - 885

Keywords

Acquired Immunodeficiency Syndrome, Adult, Amino Acid Sequence, Base Sequence, Cells, Cultured, Cloning, Molecular, DNA, Viral, Genes, Viral, Genetic Variation, Genome, Viral, HIV-1, Humans, Male, Molecular Sequence Data, Oligodeoxyribonucleotides, Polymerase Chain Reaction, Restriction Mapping, Sequence Homology, Nucleic Acid, Viral Envelope Proteins, Viral Structural Proteins