Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

It is desirable that nanopores that are components of biosensors are gated, i.e., capable of controllable switching between closed (impermeable) and open (permeable) states. A central hydrophobic barrier within a nanopore may act as a voltage-dependent gate via electrowetting, i.e., changes in nanopore surface wettability by application of an electric field. We use "computational electrophysiology" simulations to demonstrate and characterize electrowetting of a biomimetic nanopore containing a hydrophobic gate. We show that a hydrophobic gate in a model β-barrel nanopore can be functionally opened by electrowetting at voltages that do not electroporate lipid bilayers. During the process of electrowetting, voltage-induced alignment of water dipoles occurs within the hydrophobic gate region of the nanopore, with water entry preceding permeation of ions through the opened nanopore. When the ionic imbalance that generates a transbilayer potential is dissipated, water is expelled from the hydrophobic gate and the nanopore recloses. The open nanopore formed by electrowetting of a "featureless" β-barrel is anionic selective due to the transmembrane dipole potential resulting from binding of Na+ ions to the headgroup regions of the surrounding lipid bilayer. Thus, hydrophobic barriers can provide voltage-dependent gates in designed biomimetic nanopores. This extends our understanding of hydrophobic gating in synthetic and biological nanopores, providing a framework for the design of functional nanopores with tailored gating functionality.

Original publication

DOI

10.1021/acsnano.6b07865

Type

Journal article

Journal

ACS Nano

Publication Date

28/02/2017

Volume

11

Pages

1840 - 1847

Keywords

electrowetting, hydrophobic barrier, membrane, molecular dynamics simulation, nanopore