Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Neuroinflammation is emerging as a central process in many neurological conditions, either as a causative factor or as a secondary response to nervous system insult. Understanding the causes and consequences of neuroinflammation could, therefore, provide insight that is needed to improve therapeutic interventions across many diseases. However, the complexity of the pathways involved necessitates the use of high-throughput approaches to extensively interrogate the process, and appropriate strategies to translate the data generated into clinical benefit. Use of 'big data' aims to generate, integrate and analyse large, heterogeneous datasets to provide in-depth insights into complex processes, and has the potential to unravel the complexities of neuroinflammation. Limitations in data analysis approaches currently prevent the full potential of big data being reached, but some aspects of big data are already yielding results. The implementation of 'omics' analyses in particular is becoming routine practice in biomedical research, and neuroimaging is producing large sets of complex data. In this Review, we evaluate the impact of the drive to collect and analyse big data on our understanding of neuroinflammation in disease. We describe the breadth of big data that are leading to an evolution in our understanding of this field, exemplify how these data are beginning to be of use in a clinical setting, and consider possible future directions.

Original publication

DOI

10.1038/nrneurol.2016.171

Type

Journal article

Journal

Nat Rev Neurol

Publication Date

12/2016

Volume

12

Pages

685 - 698