Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

DNA variants underlying the inheritance of risk for common diseases are expected to have a wide range of population allele frequencies. The detection and scoring of the rare alleles (at frequencies of <0.01) presents significant practical problems, including the requirement for large sample sizes and the limitations inherent in current methodologies for allele discrimination. In the present report, we have applied mutational spectrometry based on constant denaturing capillary electrophoresis (CDCE) to DNA pools from large populations in order to improve the prospects of testing the role of rare variants in common diseases on a large scale. We conducted a pilot study of the cytotoxic T lymphocyte-associated antigen-4 gene (CTLA4) in type 1 diabetes (T1D). A total of 1228 bp, comprising 98% of the CTLA4 coding sequence, all adjacent intronic mRNA splice sites, and a 3' UTR sequence were scanned for unknown point mutations in pools of genomic DNA from a control population of 10,464 young American adults and two T1D populations, one American (1799 individuals) and one from the United Kingdom (2102 individuals). The data suggest that it is unlikely that rare variants in the scanned regions of CTLA4 represent a significant proportion of T1D risk and illustrate that CDCE-based mutational spectrometry of DNA pools offers a feasible and cost-effective means of testing the role of rare variants in susceptibility to common diseases.

Original publication

DOI

10.1016/j.mrfmmm.2004.11.004

Type

Journal article

Journal

Mutat Res

Publication Date

01/03/2005

Volume

570

Pages

267 - 280

Keywords

Adult, Base Sequence, DNA, DNA Primers, Electrophoresis, Capillary, Genetics, Population, Humans, Polymerase Chain Reaction