Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIM/HYPOTHESIS: Type 1 diabetes (T1D) is an autoimmune disease with multiple susceptibility genes. The aim of this study was to determine whether combining IDDM1/HLA and IDDM2/ insulin( INS) 5' variable number of tandem repeat locus (VNTR) genotypes improves T1D risk assessment. METHODS: Patients with T1D (n=488), control subjects (n=846), and offspring of parents with T1D (n=1122) were IDDM1 and IDDM2 genotyped. Offspring were followed for islet autoantibodies and T1D from birth until the age of 2 to 12 years. RESULTS: Compared to the I/I INS VNTR genotype, the I/III and III/III genotypes reduced T1D risk conferred by IDDM1/HLA in all HLA genotype categories of the case-control cohort by 1.6-fold to three-fold. The highest T1D risk was associated with INS VNTR class I/I plus HLA DR3/DR4-DQ8 (20.4% in patients, 0.6% in control subjects) or HLA DR4-DQ8/DR4-DQ8 (6.3% in patients, 0.2% in control subjects). In the offspring, HLA DR3/DR4-DQ8 and DR4-DQ8/DR4-DQ8 conferred increased risk for early development of islet autoantibodies (14.6% and 12.9% by age 2 years). Offspring with these high risk IDDM1 genotypes plus the INS VNTR class I/I genotype (n=71; 6.3%) had the highest risk of developing islet autoantibodies (21.8% by age 2 years vs 8.9% in offspring with high risk IDDM1 plus INS VNTR class I/III or III/III genotypes, p<0.05) and T1D (8.5% by age 6 years vs 4.3%). Offspring who developed autoantibodies to multiple antigens had increased frequencies of both high risk IDDM1 and IDDM2 genotypes (p<0.0001), whereas offspring who developed autoantibodies to GAD only had increased frequencies of high risk IDDM1 and protective IDDM2 genotypes, suggesting that IDDM2 influences the autoimmune target specificity. CONCLUSION/INTERPRETATION: Combining IDDM1 and IDDM2 genotyping identifies a minority of children with an increased T1D risk.

Original publication

DOI

10.1007/s00125-003-1082-z

Type

Journal article

Journal

Diabetologia

Publication Date

05/2003

Volume

46

Pages

712 - 720

Keywords

Autoantibodies, Autoimmunity, Child, Child, Preschool, DNA, Diabetes Mellitus, Type 1, Diabetes Mellitus, Type 2, European Continental Ancestry Group, Genetic Predisposition to Disease, Genotype, Germany, HLA-DQ Antigens, HLA-DR Antigens, Humans, Infant, Insulin, Life Tables, Major Histocompatibility Complex, Minisatellite Repeats, Risk Assessment, Risk Factors