Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Sustainable DNA resources and reliable high-throughput genotyping methods are required for large-scale, long-term genetic association studies. In the genetic dissection of common disease it is now recognised that thousands of samples and hundreds of thousands of markers, mostly single nucleotide polymorphisms (SNPs), will have to be analysed. In order to achieve these aims, both an ability to boost quantities of archived DNA and to genotype at low costs are highly desirable. We have investigated phi29 polymerase Multiple Displacement Amplification (MDA)-generated DNA product (MDA product), in combination with highly multiplexed BeadArray genotyping technology. As part of a large-scale BeadArray genotyping experiment we made a direct comparison of genotyping data generated from MDA product with that from genomic DNA (gDNA) templates. RESULTS: Eighty-six MDA product and the corresponding 86 gDNA samples were genotyped at 345 SNPs and a concordance rate of 98.8% was achieved. The BeadArray sample exclusion rate, blind to sample type, was 10.5% for MDA product compared to 5.8% for gDNA. CONCLUSIONS: We conclude that the BeadArray technology successfully produces high quality genotyping data from MDA product. The combination of these technologies improves the feasibility and efficiency of mapping common disease susceptibility genes despite limited stocks of gDNA samples.

Original publication

DOI

10.1186/1472-6750-4-15

Type

Journal article

Journal

BMC Biotechnol

Publication Date

27/07/2004

Volume

4

Keywords

Bacillus Phages, DNA-Directed DNA Polymerase, Genome, Human, Genotype, HLA-DR Antigens, HLA-DRB1 Chains, Humans, Nucleic Acid Amplification Techniques, Oligonucleotide Array Sequence Analysis, Polymorphism, Single Nucleotide, Templates, Genetic