Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Variants within the IL-2 (interleukin 2) and CD25 genes are associated with T1DM (Type 1 diabetes mellitus) in mice and humans respectively. Both gene products are essential for optimal immune tolerance and a partial failure to tolerize is linked to the autoimmune responses to insulin and other beta-cell proteins that precede T1DM onset. Gene variants that contribute to common disease susceptibility often alter gene expression only modestly. Small expression changes can be technically challenging to measure robustly, especially since biological variation usually contributes negatively to this goal. The present review focuses on allele-specific expression assays that can be used to quantify genotype-determined expression differences such as those observed for IL-2, where the susceptibility allele is transcribed 2-fold less than the resistance allele.

Original publication




Journal article


Biochem Soc Trans

Publication Date





312 - 315


Alleles, Animals, Diabetes Mellitus, Type 1, Genetic Predisposition to Disease, Genetic Variation, Humans, Interleukin-2, Mice, Mice, Inbred NOD, Species Specificity