Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2016, The Author(s). Published studies of silks focus on processed fibres or the optimum conditions for their production. Consequently, the effects of the environment on the physical properties of the cocoon are either poorly understood or kept as closely guarded industrial secrets. In this study, we test the hypothesis that silkworms as ectothermic animals respond to environmental conditions by modifying their spinning behaviour in a predictable manner, which affects the material properties of the cocoons in predictable ways. Our experiments subjected spinning Bombyx mori silkworms to a range of temperatures and relative humidities that, as we show, affect the morphology and mechanical properties of the cocoon. Specifically, temperature affects cocoon morphology as well as its stiffness and strength, which we attribute to altered spinning behaviour and sericin curing time. Relative humidity affects cocoon colouration, perhaps due to tanning agents. Finally, the water content of a cocoon modifies sericin distribution and stiffness without changing toughness. Our results demonstrate environmentally induced quality parameters that must not be ignored when analysing and deploying silk cocoons, silk filaments or silk-derived bio-polymers.

Original publication

DOI

10.1007/s10853-016-0298-5

Type

Journal article

Journal

Journal of Materials Science

Publication Date

01/12/2016

Volume

51

Pages

10863 - 10872