Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Phagocytosis of pathogens, apoptotic cells and debris is a key feature of macrophage function in host defense and tissue homeostasis. Quantification of macrophage phagocytosis in vitro has traditionally been technically challenging. Here we report the optimization and validation of the IncuCyte ZOOM® real time imaging platform for macrophage phagocytosis based on pHrodo® pathogen bioparticles, which only fluoresce when localized in the acidic environment of the phagolysosome. Image analysis and fluorescence quantification were performed with the automated IncuCyte™ Basic Software. Titration of the bioparticle number showed that the system is more sensitive than a spectrofluorometer, as it can detect phagocytosis when using 20× less E. coli bioparticles. We exemplified the power of this real time imaging platform by studying phagocytosis of murine alveolar, bone marrow and peritoneal macrophages. We further demonstrate the ability of this platform to study modulation of the phagocytic process, as pharmacological inhibitors of phagocytosis suppressed bioparticle uptake in a concentration-dependent manner, whereas opsonins augmented phagocytosis. We also investigated the effects of macrophage polarization on E. coli phagocytosis. Bone marrow-derived macrophage (BMDM) priming with M2 stimuli, such as IL-4 and IL-10 resulted in higher engulfment of bioparticles in comparison with M1 polarization. Moreover, we demonstrated that tolerization of BMDMs with lipopolysaccharide (LPS) results in impaired E. coli bioparticle phagocytosis. This novel real time assay will enable researchers to quantify macrophage phagocytosis with a higher degree of accuracy and sensitivity and will allow investigation of limited populations of primary phagocytes in vitro.

Original publication

DOI

10.1016/j.bcp.2016.07.011

Type

Journal article

Journal

Biochem Pharmacol

Publication Date

15/09/2016

Volume

116

Pages

107 - 119

Keywords

Bafilomycin A1 (PubChem CID: 6375210), Cytochalasin D (PubChem CID: 5458428), Inflammation, LPS, Macrophage, Nocodazole (PubChem CID: 4122), Phagocytosis, Animals, Bone Marrow Cells, Cell Line, Cell-Derived Microparticles, Cells, Cultured, Endotoxins, Escherichia coli, Humans, Image Processing, Computer-Assisted, Induced Pluripotent Stem Cells, Interleukins, Macrophage Activation, Macrophages, Macrophages, Alveolar, Macrophages, Peritoneal, Mice, Mice, Inbred C57BL, Microscopy, Fluorescence, Opsonin Proteins, Phagocytosis, RAW 264.7 Cells, Staphylococcus aureus