Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Microbes engage in cooperative behaviours by producing and secreting public goods, the benefits of which are shared among cells, and are therefore susceptible to exploitation by nonproducing cheats. In nature, bacteria are not typically colonizing sterile, rich environments in contrast to laboratory experiments, which involve inoculating sterile culture with few bacterial cells that then race to fill the available niche. Here, we study the potential implications of this difference, using the production of pyoverdin, an iron-scavenging siderophore that acts as a public good in the bacteria Pseudomonas aeruginosa. We show that (1) nonproducers are able to invade cultures of producers when added at the start of growth or during early exponential growth phase, but not during late exponential or stationary phase; (2) the producer strain does not produce pyoverdin in the late exponential and stationary phases and so is not paying the cost of cooperating during those phases. These results suggest that whether a nonproducing mutant can invade will depend upon when the mutation arises, as well as the population structure, and raise a potential difficulty with the use of antimicrobial treatment strategies that propose to exploit the invasive abilities of cheats.

Original publication




Conference paper

Publication Date





1728 - 1736


bacteria, cheating, cooperation, growth phase, Adaptation, Physiological, Iron, Oligopeptides, Pseudomonas aeruginosa, Siderophores