Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Estimates of age-specific mortality are regularly used in ecology, evolution, and conservation research. However, estimating mortality of the dispersing sex, in species where one sex undergoes natal dispersal, is difficult. This is because it is often unclear whether members of the dispersing sex that disappear from monitored areas have died or dispersed. Here, we develop an extension of a multievent model that imputes dispersal state (i.e., died or dispersed) for uncertain records of the dispersing sex as a latent state and estimates age-specific mortality and dispersal parameters in a Bayesian hierarchical framework. To check the performance of our model, we first conduct a simulation study. We then apply our model to a long-term data set of African lions. Using these data, we further study how well our model estimates mortality of the dispersing sex by incrementally reducing the level of uncertainty in the records of male lions. We achieve this by taking advantage of an expert's indication on the likely fate of each missing male (i.e., likely died or dispersed). We find that our model produces accurate mortality estimates for simulated data of varying sample sizes and proportions of uncertain male records. From the empirical study, we learned that our model provides similar mortality estimates for different levels of uncertainty in records. However, a sensitivity of the mortality estimates to varying uncertainty is, as can be expected, detectable. We conclude that our model provides a solution to the challenge of estimating mortality of the dispersing sex in species with data deficiency due to natal dispersal. Given the utility of sex-specific mortality estimates in biological and conservation research, and the virtual ubiquity of sex-biased dispersal, our model will be useful to a wide variety of applications.

Original publication

DOI

10.1002/ece3.2247

Type

Journal article

Journal

Ecology and Evolution

Publication Date

01/07/2016

Volume

6

Pages

4910 - 4923