Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The European Union AddNeuroMed program and the US-based Alzheimer Disease Neuroimaging Initiative (ADNI) are two large multi-center initiatives designed to collect and validate biomarker data for Alzheimer's disease (AD). Both initiatives use the same MRI data acquisition scheme. The current study aims to compare and combine magnetic resonance imaging (MRI) data from the two study cohorts using an automated image analysis pipeline and a multivariate data analysis approach. We hypothesized that the two cohorts would show similar patterns of atrophy, despite demographic differences and could therefore be combined. MRI scans were analyzed from a total of 1074 subjects (AD=295, MCI=444 and controls=335) using Freesurfer, an automated segmentation scheme which generates regional volume and regional cortical thickness measures which were subsequently used for multivariate analysis (orthogonal partial least squares to latent structures (OPLS)). OPLS models were created for the individual cohorts and for the combined cohort to discriminate between AD patients and controls. The ADNI cohort was used as a replication dataset to validate the model created for the AddNeuroMed cohort and vice versa. The combined cohort model was used to predict conversion to AD at baseline of MCI subjects at 1 year follow-up. The AddNeuroMed, the ADNI and the combined cohort showed similar patterns of atrophy and the predictive power was similar (between 80 and 90%). The combined model also showed potential in predicting conversion from MCI to AD, resulting in 71% of the MCI converters (MCI-c) from both cohorts classified as AD-like and 60% of the stable MCI subjects (MCI-s) classified as control-like. This demonstrates that the methods used are robust and that large data sets can be combined if MRI imaging protocols are carefully aligned.

Original publication

DOI

10.1016/j.neuroimage.2011.06.065

Type

Journal article

Journal

Neuroimage

Publication Date

01/10/2011

Volume

58

Pages

818 - 828

Keywords

Aged, Aged, 80 and over, Alzheimer Disease, Atrophy, Brain, Europe, Female, Humans, Image Interpretation, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, North America, Predictive Value of Tests