Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Plastids are a diverse group of plant organelles that perform essential functions including important steps in many biosynthetic pathways. Chloroplasts are the best characterized type of plastid, and constitute the site of oxygenic photosynthesis in plants, a process essential to all higher life forms. It is well established that the majority (>90%) of chloroplast proteins are nucleus-encoded and must be post-translationally imported into these envelope-bound compartments. Most nucleus-encoded chloroplast proteins are translated in precursor form on cytosolic ribosomes, targeted to the chloroplast surface, and then imported across the double-membrane envelope by translocons in the outer and inner envelope membranes of the chloroplast, termed TOC and TIC, respectively. Recently, significant progress has been made in our understanding of how proteins are targeted to the chloroplast surface and translocated across the chloroplast envelope into the stroma. Evidence suggesting the existence of multiple import pathways at the outer envelope membrane for different classes of precursor proteins has been presented. These pathways appear to utilize similar TOC complexes equipped with different combinations of homologous GTPase receptors, providing preprotein recognition specificity.

Original publication




Journal article


J Exp Bot

Publication Date





2287 - 2320


Chloroplasts, Membrane Proteins, Photosynthesis, Plant Proteins, Protein Precursors, Protein Transport, Ribosomes