Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The effects of asymmetric interactions on population dynamics has been widely investigated, but there has been little work aimed at understanding how life history parameters like generation time, life expectancy and the variance in lifetime reproductive success are impacted by different types of competition. We develop a new framework for incorporating trait-mediated density-dependence into size-structured models and use Trinidadian guppies to show how different types of competitive interactions impact life history parameters. Our results show the degree of symmetry in competitive interactions can have dramatic effects on the speed of the life history. For some vital rates, shifting the competitive superiority from small to large individuals resulted in a doubling of the generation time. Such large influences of competitive symmetry on the timescale of demographic processes, and hence evolution, highlights the interwoven nature of ecological and evolutionary processes and the importance of density-dependence in understanding eco-evolutionary dynamics.

Original publication

DOI

10.1111/ele.12563

Type

Journal article

Journal

Ecol Lett

Publication Date

03/2016

Volume

19

Pages

268 - 278

Keywords

Asymmetrical competition, contest competition, integral projection model, interaction surface, mesocosm, scramble competition, symmetrical competition, Animals, Competitive Behavior, Female, Models, Biological, Poecilia, Population Dynamics