Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Three discrete loci required for growth on myo-inositol in Rhizobium leguminosarum bv. viciae have been characterized. Two of these are catabolic loci that code for malonate semialdehyde dehydrogenase (iolA) and malonate semialdehyde dehydrogenase (iolD). IolD is part of a possible operon, iolDEB, although the functions of IolE and IolB are unknown. The third locus, int, codes for an ABC transport system that is highly specific for myo-inositol. LacZ analysis showed that mutation of iolD, which codes for one of the last steps in the catabolic pathway, prevents increased transcription of the entire pathway. It is likely that the pathway is induced by an end product of catabolism rather than myo-inositol itself. Mutants in any of the loci nodulated peas (Pisum sativum) and vetch (Vicia sativa) at the same rate as the wild type. Acetylene reduction rates and plant dry weights also were the same in the mutants and wild type, indicating no defects in nitrogen fixation. When wild-type 3841 was coinoculated onto vetch plants with either catabolic mutant iolD (RU360) or iolA (RU361), however, >95% of the nodules were solely infected with the wild type. The competitive advantage of the wild type was unaffected, even when the mutants were at 100-fold excess. The myo-inositol transport mutant (RU1487), which grows slowly on myo-inositol, was only slightly less competitive than the wild type. The nodulation advantage of the wild type was not the result of superior growth in the rhizosphere. Instead, it appears that the wild type may displace the mutants early on in the infection and nodulation process, suggesting an important role for myo-inositol catabolism.

Original publication

DOI

10.1094/MPMI.2001.14.8.1016

Type

Journal article

Journal

Mol Plant Microbe Interact

Publication Date

08/2001

Volume

14

Pages

1016 - 1025

Keywords

ATP-Binding Cassette Transporters, Acetolactate Synthase, Acetylene, Bacterial Proteins, Biological Transport, Carboxy-Lyases, Fabaceae, Genes, Bacterial, Genes, Reporter, Inositol, Lac Operon, Molecular Sequence Data, Mutation, Operon, Plant Roots, Rhizobium leguminosarum, Symbiosis