Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cortical thickness estimation performed in-vivo via magnetic resonance imaging is an important technique for the diagnosis and understanding of the progression of neurodegenerative diseases. Currently, two different computational paradigms exist, with methods generally classified as either surface or voxel-based. This paper provides a much needed comparison of the surface-based method FreeSurfer and two voxel-based methods using clinical data. We demonstrate that voxel-based methods can detect similar patterns of group-wise differences as well as FreeSurfer, where the lack of deformable model constraints may provide more sensitivity but with a resulting trade-off in reproducibility. © 2011 IEEE.

Original publication

DOI

10.1109/ISBI.2011.5872428

Type

Conference paper

Publication Date

02/11/2011

Pages

381 - 384