Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Orbitofrontal cortex (OFC) is widely held to be critical for flexibility in decision-making when established choice values change. OFC's role in such decision making was investigated in macaques performing dynamically changing three-armed bandit tasks. After selective OFC lesions, animals were impaired at discovering the identity of the highest value stimulus following reversals. However, this was not caused either by diminished behavioral flexibility or by insensitivity to reinforcement changes, but instead by paradoxical increases in switching between all stimuli. This pattern of choice behavior could be explained by a causal role for OFC in appropriate contingent learning, the process by which causal responsibility for a particular reward is assigned to a particular choice. After OFC lesions, animals' choice behavior no longer reflected the history of precise conjoint relationships between particular choices and particular rewards. Nonetheless, OFC-lesioned animals could still approximate choice-outcome associations using a recency-weighted history of choices and rewards.

Original publication

DOI

10.1016/j.neuron.2010.02.027

Type

Journal article

Journal

Neuron

Publication Date

25/03/2010

Volume

65

Pages

927 - 939

Keywords

Animals, Cerebral Cortex, Choice Behavior, Frontal Lobe, Learning, Macaca, Macaca mulatta, Male, Psychomotor Performance