Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Remembering an event partially reactivates cortical and subcortical brain regions that were engaged during its experience and encoding. Such reinstatement of neuronal activation has been observed in different sensory systems, including the visual, auditory, olfactory, and somatosensory domain. However, so far, this phenomenon of incidental memory has not been explored in the context of pain. In this functional magnetic resonance imaging study, we investigated the neural reinstatement of pain-related and tone-related activations during the recognition of neutral images that had been encoded during (1) painful stimulation, (2) auditory stimulation of comparable unpleasantness, or (3) no additional stimulation. Stimulus-specific reinstatement was tested in 24 healthy male and female participants who performed a visual categorization task (encoding) that was immediately followed by a surprise recognition task. Neural responses were acquired in both sessions. Our data show a partial reinstatement of brain regions frequently associated with pain processing, including the left posterior insula, bilateral putamen, and right operculum, during the presentation of images previously paired with painful heat. This effect was specific to painful stimuli. Moreover, the bilateral ventral striatum showed stronger responses for remembered pain-associated images as compared with tone-associated images, suggesting a higher behavioral relevance of remembering neutral pictures previously paired with pain. Our results support the biological relevance of pain in that only painful but not equally unpleasant auditory stimuli were able to "tag" neutral images during their simultaneous presentation and reactivate pain-related brain regions. Such mechanisms might contribute to the development or maintenance of chronic pain and deserve further investigation in clinical populations.

Original publication

DOI

10.1097/j.pain.0000000000000194

Type

Journal article

Journal

Pain

Publication Date

08/2015

Volume

156

Pages

1501 - 1510

Keywords

Acoustic Stimulation, Adult, Brain, Brain Mapping, Female, Hot Temperature, Humans, Magnetic Resonance Imaging, Male, Nociceptive Pain, Pain, Pain Perception, Photic Stimulation, Recognition (Psychology), Visual Perception, Young Adult