Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Catalytic antibodies that control the reaction pathways of the Diels-Alder cycloaddition have been generated. One antibody catalyzes the favored endo and the other the disfavored exo pathway to yield the respective cis and trans adducts in enantiomerically pure form. A comparison of the x-ray structure of the hapten with the calculated geometry of the transition structure showed that [2.2.2] bicyclic compounds are excellent mimics of the transition state of the Diels-Alder reaction. To achieve catalysis and the high degree of stereoselectivity shown here, the antibody must simultaneously control the conformation of the individual reactants and their relation to each other. In the case of the disfavored process, binding energy must be used to reroute the reaction along a higher energy pathway. The rerouting of reaction pathways has become a major focus of antibody catalysis and other disfavored reactions can be expected to be catalyzed so long as the energy barrier is not extreme. The energy requirements needed for absolute control of all of the stereoisomers of many Diels-Alder reactions fall in the energy range (approximately 20 kilocalories per mole) deliverable by antibody binding.

Original publication

DOI

10.1126/science.8211138

Type

Journal article

Journal

Science

Publication Date

08/10/1993

Volume

262

Pages

204 - 208

Keywords

Acrylamide, Acrylamides, Animals, Antibodies, Catalytic, Catalysis, Haptens, Mice, Models, Chemical, Molecular Conformation, Stereoisomerism, Thermodynamics, Urethane