Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In the bloodstream of a mammalian host, African trypanosomes are pleomorphic; the shorter, non-proliferative, stumpy forms arise from longer, proliferative, slender forms with differentiation occurring via a range of morphological intermediates. In order to investigate how the onset of morphological change is co-ordinated with exit from the cell cycle we first characterized slender form cell division. Outgrowth of the new flagellum was found to occur at a linear rate, so by using outgrowth of the new flagellum as a temporal marker of the cell cycle we were able determine the order in which single copy organelles (nucleus, kinetoplast and mitochondrion) were segregated. We also found that flagellar length was an effective marker of the slender to stumpy differentiation and were, therefore, able to study both cell division and differentiation. When these differentiating cells were compared to cells undergoing proliferative cell division, they were found to be anisomorphic--showing discernible differences not only in the length of their new flagella but also in the shape and size of the cells and their nuclei.

Original publication

DOI

10.1078/1434-4610-00074

Type

Journal article

Journal

Protist

Publication Date

12/2001

Volume

152

Pages

367 - 378

Keywords

Animals, Cell Division, Flagella, Mitochondria, Trypanosoma brucei rhodesiense