Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The post-transcriptional addition of uridines to the 3'-end of RNAs is an important regulatory process that is critical for coding and noncoding RNA stability. In fission yeast and metazoans this untemplated 3'-uridylylation is catalysed by a single family of terminal uridylyltransferases (TUTs) whose members are adapted to specific RNA targets. In Schizosaccharomyces pombe the TUT Cid1 is responsible for the uridylylation of polyadenylated mRNAs, targeting them for destruction. In metazoans, the Cid1 orthologues ZCCHC6 and ZCCHC11 uridylate histone mRNAs, targeting them for degradation, but also uridylate microRNAs, altering their maturation. Cid1 has been studied as a model TUT that has provided insights into the larger and more complex metazoan enzyme system. In this paper, two strategies are described that led to improvements both in the crystallogenesis of Cid1 and in the resolution of diffraction by ∼1.5 Å. These advances have allowed high-resolution crystallographic studies of this TUT system to be initiated.

Original publication

DOI

10.1107/S2053230X15001351

Type

Journal article

Journal

Acta Crystallogr F Struct Biol Commun

Publication Date

03/2015

Volume

71

Pages

346 - 353

Keywords

Cid1, terminal uridylyltransferases, Amino Acid Substitution, Crystallization, Crystallography, X-Ray, Nucleotidyltransferases, Schizosaccharomyces, Schizosaccharomyces pombe Proteins