Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Endogenous Retroviruses (ERVs) are retroviruses that over the course of evolution have integrated into germline cells and eventually become part of the host genome. They proliferate within the germline of their host, making up ~5% of the human and mouse genome sequences. Several lines of evidence have suggested a decline in the rate of ERV integration into the human genome in recent evolutionary history but this has not been investigated quantitatively or possible causes explored. RESULTS: By dating the integration of ERV loci in 40 mammal species, we show that the human genome and that of other hominoids (great apes and gibbons) have experienced an approximately four-fold decline in the ERV integration rate over the last 10 million years. A major cause is the recent extinction of one very large ERV lineage (HERV-H), which is responsible for most of the integrations over the last 30 million years. The decline however affects most other ERV lineages. Only about 10% of the decline might be attributed to an accompanying increase in body mass (a trait we have shown recently to be negatively correlated with ERV integration rate). Humans are unusual compared to related species - Old World monkeys, great apes and gibbons - in (a) having not acquired any new ERV lineages during the last 30 million years and (b) the possession of an old ERV lineage that has continued to replicate up until at least the last few hundred thousand years - the potentially medically significant HERVK(HML2). CONCLUSIONS: The human genome shares with the genome of other great apes and gibbons a recent decline in ERV integration that is not typical of other primates and mammals. The human genome differs from that of related species both in maintaining up until at least recently a replicating old ERV lineage and in not having acquired any new lineages. We speculate that the decline in ERV integration in the human genome has been exacerbated by a relatively low burden of horizontally-transmitted retroviruses and subsequent reduced risk of endogenization.

Original publication

DOI

10.1186/s12977-015-0136-x

Type

Journal article

Journal

Retrovirology

Publication Date

02/02/2015

Volume

12

Keywords

Animals, Endogenous Retroviruses, Evolution, Molecular, Humans, Primates, Virus Integration, Virus Replication