Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The massive daily reciprocal transfer of carbon between acids and carbohydrates that is unique to crassulacean acid metabolism (CAM) involves extensive and regulated transport of metabolites between chloroplasts, vacuoles, the cytosol and mitochondria. In this review of the CAM pathways of carbon flow and intracellular transport, we highlight what is known and what has been postulated. For three of the four CAM pathway variants currently known (malic enzyme- or PEP carboxykinase-type decarboxylase, and starch- or soluble sugar-type carbohydrate storage), the mechanisms of intracellular transport are still hypothetical and have yet to be demonstrated experimentally. Even in malic enzyme starch-storing species such as Kalanchoë daigremontiana Hamet et Perr. and Mesembryanthemum crystallinum L., the best-described variants of plants with the second-most common mode of photosynthetic carbon metabolism known, no tonoplast or mitochondrial transporter has been functionally described at a molecular level.

Original publication

DOI

10.1071/FP04189

Type

Journal article

Journal

Funct Plant Biol

Publication Date

07/2005

Volume

32

Pages

429 - 449