Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Alterations in the root shape in plant mutants indicate defects in hormonal signalling, transport and cytoskeleton function. To quantify the root shape, we introduced novel parameters designated vertical growth index (VGI) and horizontal growth index (HGI). VGI was defined as a ratio between the root tip ordinate and the root length. HGI was the ratio between the root tip abscissa and the root length. To assess the applicability of VGI and HGI for quantification of root shape, we analysed root development in agravitropic Arabidopsis mutants. Statistical analysis indicated that VGI is a sensitive morphometric parameter enabling detection of weak gravitropic defects. VGI dynamics were qualitatively similar in auxin-transport mutants aux1, pin2 and trh1, but different in the auxin-signalling mutant axr2. Analysis of VGI and HGI of roots grown on tilted plates showed that the trh1 mutation affected downstream cellular responses rather than perception of the gravitropic stimulus. All these tests indicate that the VGI and HGI analysis is a versatile and sensitive method for the study of root morphology.

Original publication




Journal article


New Phytol

Publication Date





641 - 651


Arabidopsis, Gene Expression, Gravitropism, Models, Biological, Mutation, Plant Roots