Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The positional cloning of multifactorial disease genes is a major challenge in human genetics. We have therefore empirically tested the utility of the available polymorphic microsatellite map to locate the already identified type 1 diabetes locus IDDM1 (sibling risk/population prevalence ratio lambda(s)= 2.7) within a 14 Mb region of chromosome 6p21 linked to disease. In a two-stage approach to fine mapping, linkage was evaluated in 385 affected sib-pair families using 13 evenly spaced polymorphic microsatellite markers. The whole 14 Mb showed strong linkage. Then, each marker was analysed for evidence of allelic association, revealing evidence of disease association at one marker located within the 95% confidence interval of 1.7 cM obtained by linkage. Analysis of an additional 12 markers flanking this marker revealed a highly specific region of 570 kb associated with disease ( P = 7.5 x 10(-35)), which included the HLA class II genes, known to be the primary determinants of IDDM1. The peak of association was as close as 85 kb centromeric of the disease-predisposing class II gene HLA-DQB1. We investigated the importance of the underlying inter-marker linkage disequilibrium, marker informativity and recombination for fine mapping and demonstrate that the majority of disease association in the region can be explained by linkage disequilibrium with the class II susceptibility genes. Recombination within the major histocompatibility complex was rare and nearly absent in the class III region. We demonstrate that fine mapping of a multifactorial disease gene is possible with high accuracy even in a region with extraordinary linkage disequilibrium across distances of several Mb. The results will be applicable to association studies of disease loci with lambda(s)values <2.7 except that much larger data sets will be required.

Original publication




Journal article


Hum Mol Genet

Publication Date





1291 - 1301


Adolescent, Adult, Alleles, Chromosome Mapping, Chromosomes, Human, Pair 6, Diabetes Mellitus, Type 1, Family Health, Genes, MHC Class II, Genetic Linkage, Genotype, HLA-DQ Antigens, HLA-DQ beta-Chains, Humans, Linkage Disequilibrium, Microsatellite Repeats, Multifactorial Inheritance, Physical Chromosome Mapping, Recombination, Genetic