Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We have investigated the subcellular localization, the domain topology, and the amino acid residues that are critical for the function of the presumptive Arabidopsis thaliana auxin influx carrier AUX1. Biochemical fractionation experiments and confocal studies using an N-terminal yellow fluorescent protein (YFP) fusion observed that AUX1 colocalized with plasma membrane (PM) markers. Because of its PM localization, we were able to take advantage of the steep pH gradient that exists across the plant cell PM to investigate AUX1 topology using YFP as a pH-sensitive probe. The YFP-coding sequence was inserted in selected AUX1 hydrophilic loops to orient surface domains on either apoplastic or cytoplasmic faces of the PM based on the absence or presence of YFP fluorescence, respectively. We were able to demonstrate in conjunction with helix prediction programs that AUX1 represents a polytopic membrane protein composed of 11 transmembrane spanning domains. In parallel, a large aux1 allelic series containing null, partial-loss-of-function, and conditional mutations was characterized to identify the functionally important domains and amino acid residues within the AUX1 polypeptide. Whereas almost all partial-loss-of-function and null alleles cluster in the core permease region, the sole conditional allele aux1-7 modifies the function of the external C-terminal domain.

Original publication

DOI

10.1105/tpc.104.024737

Type

Journal article

Journal

Plant Cell

Publication Date

11/2004

Volume

16

Pages

3069 - 3083

Keywords

Alleles, Amino Acid Sequence, Arabidopsis, Arabidopsis Proteins, Cell Membrane, Gravitropism, Indoleacetic Acids, Molecular Sequence Data, Mutation, Missense, Plants, Genetically Modified, Protein Structure, Tertiary, Structure-Activity Relationship