Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

SUMMARY: We present GeneNet Toolbox for MATLAB (also available as a set of standalone applications for Linux). The toolbox, available as command-line or with a graphical user interface, enables biologists to assess connectivity among a set of genes of interest ('seed-genes') within a biological network of their choosing. Two methods are implemented for calculating the significance of connectivity among seed-genes: 'seed randomization' and 'network permutation'. Options include restricting analyses to a specified subnetwork of the primary biological network, and calculating connectivity from the seed-genes to a second set of interesting genes. Pre-analysis tools help the user choose the best connectivity-analysis algorithm for their network. The toolbox also enables visualization of the connections among seed-genes. GeneNet Toolbox functions execute in reasonable time for very large networks (∼10 million edges) on a desktop computer. AVAILABILITY AND IMPLEMENTATION: GeneNet Toolbox is open source and freely available from http://avigailtaylor.github.io/gntat14. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: avigail.taylor@dpag.ox.ac.uk.

Original publication

DOI

10.1093/bioinformatics/btu669

Type

Journal article

Journal

Bioinformatics

Publication Date

01/02/2015

Volume

31

Pages

442 - 444

Keywords

Algorithms, Computational Biology, Computer Graphics, Databases, Genetic, Gene Expression Regulation, Gene Regulatory Networks, Humans, Information Storage and Retrieval, Metabolic Networks and Pathways, Sequence Analysis, DNA, Software, User-Computer Interface