Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Associations in mixed-species foraging groups are common in animals, yet have rarely been explored in the context of collective behaviour. Despite many investigations into the social and ecological conditions under which individuals should form groups, we still know little about the specific behavioural rules that individuals adopt in these contexts, or whether these can be generalized to heterospecifics. Here, we studied collective behaviour in flocks in a community of five species of woodland passerine birds. We adopted an automated data collection protocol, involving visits by RFID-tagged birds to feeding stations equipped with antennae, over two winters, recording 91 576 feeding events by 1904 individuals. We demonstrated highly synchronized feeding behaviour within patches, with birds moving towards areas of the patch with the largest proportion of the flock. Using a model of collective decision making, we then explored the underlying decision rule birds may be using when foraging in mixed-species flocks. The model tested whether birds used a different decision rule for conspecifics and heterospecifics, and whether the rules used by individuals of different species varied. We found that species differed in their response to the distribution of conspecifics and heterospecifics across foraging patches. However, simulating decisions using the different rules, which reproduced our data well, suggested that the outcome of using different decision rules by each species resulted in qualitatively similar overall patterns of movement. It is possible that the decision rules each species uses may be adjusted to variation in mean species abundance in order for individuals to maintain the same overall flock-level response. This is likely to be important for maintaining coordinated behaviour across species, and to result in quick and adaptive flock responses to food resources that are patchily distributed in space and time.

Original publication

DOI

10.1016/j.anbehav.2014.07.008

Type

Journal article

Journal

Anim Behav

Publication Date

09/2014

Volume

95

Pages

173 - 182

Keywords

Cyanistes caeruleus, Paridae, Parus major, collective behaviour, decision making, interspecific interaction, mixed-species flocking, social information use