Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The castes of social insects provide outstanding opportunities to address the causes and consequences of evolution of discrete phenotypes, i.e., polymorphisms. Here we focus on recently described patterns of a positive association between the degree of caste-specific gene expression and the rate of sequence evolution. We outline how neutral and adaptive evolution can cause genes that are morph-biased in their expression profiles to exhibit historical signatures of faster or slower sequence evolution compared to unbiased genes. We conclude that evaluation of different hypotheses will benefit from (i) reconstruction of the phylogenetic origin of biased expression and changes in rates of sequence evolution, and (ii) replicated data on gene expression variation within versus between morphs. Although the data are limited at present, we suggest that the observed phylogenetic and intra-population variation in gene expression lends support to the hypothesis that the association between caste-biased expression and rate of sequence evolution largely is a result of neutral processes.

Original publication

DOI

10.3389/fgene.2014.00297

Type

Journal article

Journal

Front Genet

Publication Date

2014

Volume

5

Keywords

antagonistic pleiotropy, neutral evolution, phenotypic plasticity, polymorphism, social insects