Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

How central-place foragers change search strategy in response to environmental conditions is poorly known. Foragers may vary the total distance travelled and how far they range from the central place in response to variation in the distribution of their prey. One potential reason as to why they would extend the length of their foraging trip and its distance from the colony would be to increase prey quality or quantity, despite incurring higher transit costs. To test this trade-off hypothesis in a species with high flight costs, we recorded the foraging behaviour of razorbills (Alca torca) using state-of-the-art techniques that log both individual horizontal (flight activity) and vertical (dive activity) movements. We show that the distance that razorbills travelled to foraging locations increased with sea-surface temperature, which may relate to higher prey quality or quantity. This relation is supported by an indirect index of patch quality, based on dive profiles, which also increased with travel distance from the colony. Furthermore, we show that this index was highest during the daily peak in diving activity, around midday. Taken together, these results suggest that razorbills are capable of adjusting their search strategies sensitively in response to proximate environmental cues. © 2014 Springer-Verlag Berlin Heidelberg.

Original publication




Journal article


Marine Biology

Publication Date