Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Estimates of selection in natural populations are frequent but our understanding of ecological causes of selection, and causes of variation in the direction, strength and form of selection is limited. Here, we apply a multilevel framework to partition effects of great tit fledging mass on first-year survival to hierarchical levels and quantify their ecological dependence using a data set spanning 51 years. We show that estimates of the effect of fledging mass on first-year survival decline threefold from year- to brood- to individual level, so that estimates of selection depend strongly on the level at which they are calculated. We identify variables related to summer and winter food availability as underlying higher-level effects of fledging mass on first-year survival and show experimentally that brood-level effects originate early in development. Further, we show that predation and conspecific density modulate individual-level effects of fledging mass on first-year survival. These analyses demonstrate how correlations between traits, fitness and environment influence estimates of selection and show how partitioning trait effects between levels of selection and environmental factors is a promising approach to identify potential agents of selection.

Original publication

DOI

10.1111/1365-2656.12264

Type

Journal article

Journal

J Anim Ecol

Publication Date

01/2015

Volume

84

Pages

208 - 218

Keywords

Parus major, ecological causes of selection, fledging mass, great tit, local survival, multilevel selection, recruitment, Animals, Body Size, England, Environment, Longevity, Population Dynamics, Seasons, Songbirds