Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Insulin-like growth factor II is a fetal promoter of cell proliferation that is involved in some forms of cancer and overgrowth syndromes in humans. Here, we provide two sources of genetic evidence for a novel, pivotal role of locally produced insulin-like growth factor II in the development of atherosclerosis. First, we show that homozygosity for a disrupted insulin-like growth factor II allele in mice lacking apolipoprotein E, a widely used animal model of atherosclerosis, results in aortic lesions that are approximately 80% smaller and contain approximately 50% less proliferating cells compared with mice lacking only apolipoprotein E. Second, targeted expression of an insulin-like growth factor II transgene in smooth muscle cells, but not the mere elevation of circulating levels of the peptide, causes per se aortic focal intimal thickenings. The insulin-like growth factor II transgenics presented here are the first viable mutant mice spontaneously developing intimal masses. These observations provide the first direct evidence for an atherogenic activity of insulin-like growth factor II in vivo.

Original publication




Journal article


J Biol Chem

Publication Date





4505 - 4511


Animals, Aorta, Arteriosclerosis, Disease Models, Animal, Hyperlipidemias, Insulin-Like Growth Factor II, Mice, Mice, Knockout, Microscopy, Electron, Transgenes