Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Little is known about the contributors and physiological responses to white matter hypoperfusion in the human brain. We previously showed the ratio of myelin-associated glycoprotein to proteolipid protein 1 in post-mortem human brain tissue correlates with the degree of ante-mortem ischaemia. In age-matched post-mortem cohorts of Alzheimer's disease (n = 49), vascular dementia (n = 17) and control brains (n = 33) from the South West Dementia Brain Bank (Bristol), we have now examined the relationship between the ratio of myelin-associated glycoprotein to proteolipid protein 1 and several other proteins involved in regulating white matter vascularity and blood flow. Across the three cohorts, white matter perfusion, indicated by the ratio of myelin-associated glycoprotein to proteolipid protein 1, correlated positively with the concentration of the vasoconstrictor, endothelin 1 (P = 0.0005), and negatively with the concentration of the pro-angiogenic protein, vascular endothelial growth factor (P = 0.0015). The activity of angiotensin-converting enzyme, which catalyses production of the vasoconstrictor angiotensin II was not altered. In samples of frontal white matter from an independent (Oxford, UK) cohort of post-mortem brains (n = 74), we confirmed the significant correlations between the ratio of myelin-associated glycoprotein to proteolipid protein 1 and both endothelin 1 and vascular endothelial growth factor. We also assessed microvessel density in the Bristol (UK) samples, by measurement of factor VIII-related antigen, which we showed to correlate with immunohistochemical measurements of vessel density, and found factor VIII-related antigen levels to correlate with the level of vascular endothelial growth factor (P = 0.0487), suggesting that upregulation of vascular endothelial growth factor tends to increase vessel density in the white matter. We propose that downregulation of endothelin 1 and upregulation of vascular endothelial growth factor in the context of reduced ratio of myelin-associated glycoprotein to proteolipid protein 1 are likely to be protective physiological responses to reduced white matter perfusion. Further analysis of the Bristol cohort showed that endothelin 1 was reduced in the white matter in Alzheimer's disease (P < 0.05) compared with control subjects, but not in vascular dementia, in which endothelin 1 tended to be elevated, perhaps reflecting abnormal regulation of white matter perfusion in vascular dementia. Our findings demonstrate the potential of post-mortem measurement of myelin proteins and mediators of vascular function, to assess physiological and pathological processes involved in the regulation of cerebral perfusion in Alzheimer's disease and vascular dementia.

Original publication

DOI

10.1093/brain/awu040

Type

Journal article

Journal

Brain

Publication Date

05/2014

Volume

137

Pages

1524 - 1532

Keywords

Alzheimer’s disease, brain ischaemia, cerebral blood flow, dementia, neuropathology, Aged, Aged, 80 and over, Alzheimer Disease, Brain, Cohort Studies, Dementia, Vascular, Endothelin-1, Factor VIII, Female, Humans, Male, Middle Aged, Myelin-Associated Glycoprotein, Nerve Fibers, Myelinated, Peptidyl-Dipeptidase A, Vascular Endothelial Growth Factor A