Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Hypothalamic GABA signaling has been shown to regulate the hormonal response to hypoglycemia in animals. The hypothalamus is a challenging brain region for magnetic resonance spectroscopy (MRS) due to its small size and central location. To investigate the feasibility of measuring GABA in the hypothalamus in humans, ultra-high field MRS was used. METHODS: GABA levels in the hypothalamus and occipital cortex (control region) were measured in healthy volunteers during euglycemia and hypoglycemia at 7 tesla using short-echo STEAM (TE = 8 ms, TR = 5 s). RESULTS: Hypothalamic GABA levels were quantified with a mean within-session test-retest coefficient of variance of 9%. Relatively high GABA levels were observed in the hypothalamus compared with other brain regions. Hypothalamic GABA levels were 3.5 ± 0.3 µmol/g during euglycemia (glucose 89 ± 6 mg/dL) vs. 3.0 ± 0.4 µmol/g during hypoglycemia (glucose 61 ± 3 mg/dL) (P = 0.06, N = 7). In the occipital cortex, GABA levels remained constant at 1.4 ± 0.4 vs.1.4 ± 0.3 µmol/g (P = 0.3, N = 5) as glucose fell from 91 ± 4 to 61 ± 4 mg/dL. CONCLUSION: GABA concentration can be quantified in the human hypothalamus and shows a trend toward decrease in response to an acute fall in blood glucose. These methods can be used to further investigate role of GABA signaling in the counterregulatory response to hypoglycemia in humans.

Original publication




Journal article


Magn Reson Med

Publication Date





12 - 18


7 tesla, GABA, hypoglycemia, hypothalamus, magnetic resonance spectroscopy, Adult, Blood Glucose, Female, Humans, Hyperinsulinism, Hypoglycemia, Hypothalamus, Insulin, Magnetic Resonance Spectroscopy, Male, Occipital Lobe, Pilot Projects, Reference Values, Reproducibility of Results, Sensitivity and Specificity, gamma-Aminobutyric Acid