Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Exposure to food allergens through a disrupted skin barrier has been recognized as a potential factor in the increasing prevalence of food allergy. OBJECTIVE: We sought to test the immunologic mechanisms by which epicutaneous sensitization to food allergens predisposes to intestinal food allergy. METHODS: Mice were epicutaneously sensitized with ovalbumin or peanut on an atopic dermatitis-like skin lesion, followed by intragastric antigen challenge. Antigen-specific serum IgE levels and T(H)2 cytokine responses were measured by ELISA. Expression of type 2 cytokines and mast cell proteases in the intestine were measured by using real-time PCR. Accumulation of basophils in the skin and mast cells in the intestine was examined by using flow cytometry. In vivo basophil depletion was achieved by using diphtheria toxin treatment of Baso-DTR mice. For cell-transfer studies, the basophil population was expanded in vivo by means of hydrodynamic tail vein injection of thymic stromal lymphopoietin (TSLP) cDNA plasmid. RESULTS: Sensitization to food allergens through an atopic dermatitis-like skin lesion is associated with an expansion of TSLP-elicited basophils in the skin that promote antigen-specific T(H)2 cytokine responses, increased antigen-specific serum IgE levels, and accumulation of mast cells in the intestine, promoting the development of intestinal food allergy. Critically, disruption of TSLP responses or depletion of basophils reduced the susceptibility to intestinal food allergy, whereas transfer of TSLP-elicited basophils into intact skin promoted disease. CONCLUSION: Epicutaneous sensitization on a disrupted skin barrier is associated with accumulation of TSLP-elicited basophils, which are necessary and sufficient to promote antigen-induced intestinal food allergy.

Original publication

DOI

10.1016/j.jaci.2014.01.021

Type

Journal article

Journal

J Allergy Clin Immunol

Publication Date

05/2014

Volume

133

Pages

1390 - 1399.e6

Keywords

Food allergy, IgE, atopic dermatitis, basophils, epicutaneous sensitization, mast cells, thymic stromal lymphopoietin, Allergens, Animals, Basophils, Cytokines, Dermatitis, Atopic, Food Hypersensitivity, Immunoglobulin E, Intestinal Mucosa, Intestines, Mast Cells, Mice, Mice, Inbred BALB C, Mice, Knockout, Skin, Th2 Cells