Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The extent of population mixing is known to influence the coevolutionary outcomes of many host and parasite traits, including the evolution of generalism (the ability to resist or infect a broad range of genotypes). While the segregation of populations into interconnected demes has been shown to influence the evolution of generalism, the role of local interactions between individuals is unclear. Here, we combine an individual-based model of microbial communities with a well-established framework of genetic specificity that matches empirical observations of bacterium-phage interactions. We find the evolution of generalism in well-mixed populations to be highly sensitive to the severity of associated fitness costs, but the constraining effect of costs on the evolution of generalism is lessened in spatially structured populations. The contrasting outcomes between the two environments can be explained by different scales of competition (i.e., global vs. local). These findings suggest that local interactions may have important effects on the evolution of generalism in host-parasite interactions, particularly in the presence of high fitness costs.

Original publication

DOI

10.1086/674826

Type

Journal article

Journal

Am Nat

Publication Date

03/2014

Volume

183

Pages

E64 - E74

Keywords

Animals, Bacteria, Bacteriophages, Biological Evolution, Genetic Fitness, Host-Pathogen Interactions, Models, Biological