Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Evaluating the abilities of others is fundamental for successful economic and social behavior. We investigated the computational and neurobiological basis of ability tracking by designing an fMRI task that required participants to use and update estimates of both people and algorithms' expertise through observation of their predictions. Behaviorally, we find a model-based algorithm characterized subject predictions better than several alternative models. Notably, when the agent's prediction was concordant rather than discordant with the subject's own likely prediction, participants credited people more than algorithms for correct predictions and penalized them less for incorrect predictions. Neurally, many components of the mentalizing network-medial prefrontal cortex, anterior cingulate gyrus, temporoparietal junction, and precuneus-represented or updated expertise beliefs about both people and algorithms. Moreover, activity in lateral orbitofrontal and medial prefrontal cortex reflected behavioral differences in learning about people and algorithms. These findings provide basic insights into the neural basis of social learning.

Original publication

DOI

10.1016/j.neuron.2013.10.024

Type

Journal article

Journal

Neuron

Publication Date

18/12/2013

Volume

80

Pages

1558 - 1571

Keywords

Adolescent, Adult, Aptitude, Brain, Brain Mapping, Female, Humans, Learning, Male, Models, Psychological, Psychomotor Performance, Social Perception