Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Most avian influenza viruses do not replicate efficiently in human cells. This is partly due to the low activity of the RNA polymerase of avian influenza viruses in mammalian cells. Nevertheless, this impediment can be overcome through an E→K adaptive mutation at residue 627 of the PB2 subunit of the polymerase. Accordingly, viral ribonucleoprotein (RNP) reconstitution assays show that a viral polymerase containing PB2 627E has impaired activity in mammalian cells compared to a viral polymerase that contains PB2 627K, characteristic of mammalian-adapted influenza viruses. In contrast, purified viral polymerases containing either PB2 627E or PB2 627K show comparable levels of activity in transcription assays that require no RNP assembly. We sought to reconcile these conflicting observations by using an NP-independent cell-based transcription/replication assay to assess viral polymerase activity. We found that PB2 627E polymerase restriction in mammalian cells is independent of NP expression but is dependent on the length of the viral RNA template. In addition, restriction of PB2 627E polymerase was overcome by mutations specific to the viral RNA template promoter sequence. Consequently, we propose that PB2 627E affects recruitment of the viral RNA promoter by the viral polymerase in mammalian cells.

Original publication




Journal article


J Virol

Publication Date





339 - 344


Base Sequence, DNA Primers, DNA-Directed RNA Polymerases, HEK293 Cells, Humans, Influenza A virus, Polymerase Chain Reaction, Ribonucleoproteins, Templates, Genetic