Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Movement is accompanied by changes in the degree to which neurons in corticobasal ganglia loops synchronize their activity within discrete frequency ranges. Although two principal frequency bands--beta (15-30 Hz) and gamma (60-90 Hz)--have been implicated in motor control, the precise functional correlates of their activities remain unclear. Local field potential (LFP) recordings in humans with Parkinson's disease undergoing surgery for deep brain stimulation to the subthalamic nucleus (STN) indicate that spectral changes both anticipate movement and occur perimovement. The extent to which such changes are modulated by cognitive factors involved in making a correct response seems critical in characterizing the functional associations of these oscillations. Accordingly, by recording LFP activity from the STN in parkinsonian patients, we demonstrate that perimovement beta and gamma reactivity is modulated by task complexity in a dopamine-dependent manner, despite the dynamics of the movement remaining unchanged. In contrast, spectral changes occurring in anticipation of future movement were limited to the beta band and, although modulated by dopaminergic therapy, were not modulated by task complexity. Our findings suggest two dopamine-dependent processes indexed by spectral changes in the STN: (1) an anticipatory activity reflected in the beta band that signals the likelihood of future action but does not proactively change with the cognitive demands of the potential response, and (2) perimovement activity that involves reciprocal beta and gamma band changes and is not exclusively related to explicit motor processing. Rather perimovement activity can also vary with, and may reflect, the cognitive complexity of the task.

Original publication

DOI

10.1523/JNEUROSCI.1790-13.2013

Type

Journal article

Journal

J Neurosci

Publication Date

02/10/2013

Volume

33

Pages

15815 - 15826

Keywords

Adult, Antiparkinson Agents, Beta Rhythm, Brain Mapping, Cognition, Female, Humans, Levodopa, Male, Middle Aged, Movement, Neurons, Parkinson Disease, Subthalamic Nucleus