Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Structural details about the geometry of the retinal chromophore in the binding pocket of bacteriorhodopsin are revealed by measuring the orientations of its individual methyl groups. Solid-state 2H-NMR measurements were performed on macroscopically oriented samples of purple membrane patches, containing retinal specifically deuterium-labeled at one of the three methyl groups along the polyene chain (C18, C19, C20). The deuterium quadrupole splitting of each "zero-tilt" spectrum is used to calculate the orientation of the corresponding C-CD3 bond vector with respect to the membrane normal; however, two possible solutions may arise. These ambiguities in angle could be resolved by recording a tilt series of spectra at different sample inclinations to the magnetic field and analyzing the resulting complex line shapes with the aid of computer simulations. The angles for the C18, C19, and C20 group are found to be 37 +/- 1 degree, 40 +/- 1 degree, and 32 +/- 1 degree, respectively. These highly accurate values imply that the polyene chain of the retinal chromophore is not straight but rather has an in-plane curvature and possibly an out-of-plane twist. Together with the angles of the remaining methyl groups on the cyclohexene ring that have been measured previously, an overall picture has thus emerged of the intramolecular conformation and the three-dimensional orientation of retinal within bacteriorhodopsin. The deduced geometry confirms and refines the known structural information on the chromophore, suggesting that this 2H-NMR strategy may serve as a valuable tool for other membrane proteins.

Type

Journal article

Journal

Biochemistry

Publication Date

10/05/1994

Volume

33

Pages

5370 - 5375

Keywords

Bacteriorhodopsins, Deuterium, Halobacterium, Magnetic Resonance Spectroscopy, Protein Conformation, Retinaldehyde