Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

From our earlier extensive protein-lipid reconstitution studies, the conditions under which bacteriorhodopsin forms organised 2D arrays in large unilamellar vesicles have been established using freeze-fracture electron microscopy. In a background bilayer matrix of phosphatidylcholine (diC(14:0)), the protein can form arrays only when the anionic purple membrane lipid, phosphatidylglycerol phosphate (or the sulphate derivative) is present. Here we have now extended this work to investigate the effect of bilayer thickness on array formation. Phosphatidylcholines with various chain lengths (diC(12:0), diC(14:0) and diC(16:0)) and which form bilayers of well defined bilayer thickness, have been used as the matrix into which bacteriorhodopsin, together with minimal levels (c. 4-10 lipids per bacteriorhodopsin) of diphytanyl phosphatidyl-glycerol phosphate, has been reconstituted. Arrays are formed in all complexes and bhickness appears only to alter the type of array formed, either as an orthogonal or as an hexagonal array. Secondly, we have previously deduced the entire conformation of retinal within the bacteriorhodopsin binding pocket in oriented purple membrane fragments. Using solid state deuterium NMR of the specifically deutero-methylated retinal labelled at each of the methyl positions in the molecule, the C-CD(3) bond vectors of the chromophore have been resolved to +/- 2 degrees . The ring conformation is 6-S-trans, but the polyene chain is slightly curved when in the protein binding site. Here, we describe studies on the protein in both the ground state and the trapped M(412)-state of the photocycle, to show that the orientation of the central methyl group (C(19)) on the polyene chain, which is at 40 degrees +/- 1 degrees with respect to the membrane normal, only changes its orientation by approximately 4 degrees upon 13-cis-isomerization. Thus, it is the Schiff base end of the chromophore which moves upon light incidence acting as a local switch on the protein in the photocycle, whilst the ring end of the chromophore moves rather less.


Journal article


Biophys Chem

Publication Date





41 - 46