Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The extent to which individual plants utilise nitrate and ammonium, the two principal nitrogen sources in the rhizosphere, is variable and many species require a balance between the two forms for optimal growth. The effects of nitrate and ammonium on gene expression, enzyme activity and metabolite composition have been documented extensively with the aim of understanding the way in which plant cells respond to the different forms of nitrogen, but ultimately the impact of these changes on the organisation and operation of the central metabolic network can only be addressed by analysing the fluxes supported by the network. Accordingly steady-state metabolic flux analysis was used to define the metabolic phenotype of a heterotrophic Arabidopsis thaliana cell culture grown in Murashige and Skoog and ammonium-free media, treatments that influenced growth and biomass composition. Fluxes through the central metabolic network were deduced from the redistribution of label into metabolic intermediates and end products observed when cells were labelled with [1-13C]-, [2-13C]- or [13C6]glucose, in tandem with14C-measurements of the net accumulation of biomass. Analysis of the flux maps showed that: (i) flux through the oxidative pentose phosphate pathway varied independently of the reductant demand for biosynthesis, (ii) non-plastidic processes made a significant and variable contribution to the provision of reducing power for the plastid, and (iii) the inclusion of ammonium in the growth medium increased cell maintenance costs, in agreement with the futile cycling model of ammonium toxicity. These conclusions highlight the complexity of the metabolic response to a change in nitrogen nutrition. © 2013 John Wiley & Sons Ltd.

Original publication




Journal article


Plant Journal

Publication Date





569 - 582