Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The associative sequence learning (ASL) hypothesis suggests that sensorimotor experience plays an inductive role in the development of the mirror neuron system, and that it can play this crucial role because its effects are mediated by learning that is sensitive to both contingency and contiguity. The Hebbian hypothesis proposes that sensorimotor experience plays a facilitative role, and that its effects are mediated by learning that is sensitive only to contiguity. We tested the associative and Hebbian accounts by computational modelling of automatic imitation data indicating that MNS responsivity is reduced more by contingent and signalled than by non-contingent sensorimotor training (Cook et al. [7]). Supporting the associative account, we found that the reduction in automatic imitation could be reproduced by an existing interactive activation model of imitative compatibility when augmented with Rescorla-Wagner learning, but not with Hebbian or quasi-Hebbian learning. The work argues for an associative, but against a Hebbian, account of the effect of sensorimotor training on automatic imitation. We argue, by extension, that associative learning is potentially sufficient for MNS development.

Original publication

DOI

10.1016/j.neulet.2012.10.002

Type

Journal article

Journal

Neurosci Lett

Publication Date

12/04/2013

Volume

540

Pages

28 - 36

Keywords

Animals, Association Learning, Computer Simulation, Humans, Imitative Behavior, Mirror Neurons