Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ataxia with oculomotor apraxia type 2 (AOA2) is one of the most frequent autosomal recessive cerebellar ataxias. Oculomotor apraxia refers to horizontal gaze failure due to deficits in voluntary/reactive eye movements. These deficits can manifest as increased latency and/or hypometria of saccades with a staircase pattern and are frequently associated with compensatory head thrust movements. Oculomotor disturbances associated with AOA2 have been poorly studied mainly because the diagnosis of oculomotor apraxia was based on the presence of compensatory head thrusts. The aim of this study was to characterise the nature of horizontal gaze failure in patients with AOA2 and to demonstrate oculomotor apraxia even in the absence of head thrusts. Five patients with AOA2, without head thrusts, were tested in saccadic tasks with the head restrained or free to move and their performance was compared to a group of six healthy participants. The most salient deficit of the patients was saccadic hypometria with a typical staircase pattern. Saccade latency in the patients was longer than controls only for memory-guided saccades. In the head-free condition, head movements were delayed relative to the eye and their amplitude and velocity were strongly reduced compared to controls. Our study emphasises that in AOA2, hypometric saccades with a staircase pattern are a more reliable sign of oculomotor apraxia than head thrust movements. In addition, the variety of eye and head movements' deficits suggests that, although the main neural degeneration in AOA2 affects the cerebellum, this disease affects other structures.

Original publication

DOI

10.1007/s12311-013-0463-1

Type

Journal article

Journal

Cerebellum

Publication Date

08/2013

Volume

12

Pages

557 - 567

Keywords

Adult, Eye Movements, Female, Head Movements, Humans, Male, Photic Stimulation, Psychomotor Performance, Reaction Time, Saccades, Spinocerebellar Ataxias, Spinocerebellar Degenerations, Young Adult