Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

• Cord-forming woodland basidiomycete fungi form extensive, interconnected mycelial networks that scavenge nitrogen (N) efficiently. We have developed techniques to study N dynamics in such complex mycelial systems in vivo. • Uptake and distribution of the nonmetabolised, 14C-labelled amino-acid analogue, α-aminoisobutyrate (14C-AIB) was continuously imaged in Phanerochaete velutina growing across scintillation screens using an enhanced photon-counting camera. • Oscillations in the 14C-AIB signal were observed for both the assimilatory hyphae in the inoculum and the foraging hyphae, but with complementary profiles. Pulses were asymmetric, with an abrupt switch between each exponential decay phase and the next rising phase. The period of the oscillations was 16 h at 21°C, but showed a strong temperature dependence with a temperature coefficient of 2.1. Oscillations occurred in the absence of obvious pulses in growth. • Some, but not all, of the features of the oscillations were simulated using a model of amino acid accumulation and transport that included both vacuolar uptake, and release once an intravacuolar concentration threshold was exceeded. The combination of imaging and modelling provides a useful framework to understand N fluxes in vivo.

Original publication

DOI

10.1046/j.1469-8137.2003.00737.x

Type

Journal article

Journal

New Phytologist

Publication Date

01/05/2003

Volume

158

Pages

325 - 335